Electrobiofabrication to create complex materials systems

Le 5 novembre 2018
À 10h30

Vous êtes cordialement invités à la conférence de Gregory F. Payne, Institute for Bioscience and Biotechnology, University of Maryland, USA, organisée par l'Insitut Charles Sadron.

Résumé :

Compared to conventional materials fabrication that focused on shape and strength, biofabrication methods will need to satisfy an entirely new and more subtle set of requirements to meet the needs of emerging life sciences applications. A common emerging fabrication goal is to recapitulate complex biological contexts (e.g., tissue) for applications that range from animal-on-a-chip to regenerative medicine. In these cases, the materials systems will be required to: (i) present appropriate surface functionalities over a hierarchy of length scales (e.g., molecular features that enable cell adhesion and topographical features that guide differentiation); (ii) provide a suite of mechanobiological cues that promote the emergence of native-like tissue form and function; and (iii) organize structure to control cellular ingress and molecular transport to enable the development of a cellular community actively participating in cell-cell signaling. And these requirements will not likely be static but vary over time and space which will require capabilities for the material systems to dynamically respond, adapt, heal and reconfigure. Electrofabrication is an emerging method for hierarchical assembly that provides capabilities that are both unique and complementary to existing biofabrication methods (e.g., lithographic or printing). Specifically, electrofabrication enlists quantitatively controllable electrical signals to promote the migration, alignment, self-assembly and functionalization of material systems. Previous studies have shown that electrofabrication can be coupled with conventional synthetic chemistry and biofabrication methods to confer molecular and mesoscale functions. Increasingly, electrofabrication is being applied to guide the hierarchical assembly of biological materials (e.g., chitosan, alginate, collagen and silk) and this electrobiofabrication enables access to the biotechnology toolbox (e.g., enzymatic-assembly and protein engineering) to offer exquisite control of structure and function. Here, we highlight recent progress from various labs to demonstrate the potential of electrobiofabrication.

Les personnes souhaitant rencontrer Gregory Payne sont priées de prendre contact avec Fouzia Boulmedais (tel. 03 88 41 41 60 ou mail : fouzia.boulmedais@ics-cnrs.unistra.fr)

Label du Ministère de l'enseignement supérieur, de la recherche et de l'innovation CTI - Commission des Titres d'Ingénieur EUR-ACE® system - European Accreditation of Engineering Programmes Université franco-allemande Certification AFAQ - ISO 9001 IAR Label DD&RS
L'ECPM est membre de
Fédération Gay Lussac Alsace Tech - Grandes écoles d'ingénieurs, d'architecture et de management Conférence des Grandes Écoles CDEFI - Conférence des Directeurs des Écoles Françaises d'Ingénieurs
L'ECPM est associée à
AICS - Association des Ingénieurs de Chimie Strasbourg